C-t E T Representation

نویسنده

  • Andrea CAPPELLI
چکیده

Zamolodchikov's c-theorem is reformulated by using the spectral representation for the two-point function of the stress tensor . This approach makes explicit the unitarity constraints on the field theory and implements a nice physical picture of the renormalization group flow . An attempt is made to generalize the theorem above two space-time dimensions . There are two candidate c-functions, the spectral densities for spin-zero and spin-two intermediate states . The latter one is ruled out by means of examples . The spin-zero density can satisfy a generalized c-theorem, if the corresponding "central charge" is well defined at the fixed points . A meaningful charge is obtained by defining the theory on curved hyperbolic space . However, its limit to flat space needs some assumptions which seem to hold for free theories only . As a by-product, the trace anomaly in four dimensions is related to the spectral densities . Received 20 August 1990

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Representation of $H$-closed monoreflections in archimedean $ell$-groups with weak unit

 The category of the title is called $mathcal{W}$. This has all free objects $F(I)$ ($I$ a set). For an object class $mathcal{A}$, $Hmathcal{A}$ consists of all homomorphic images of $mathcal{A}$-objects. This note continues the study of the $H$-closed monoreflections $(mathcal{R}, r)$ (meaning $Hmathcal{R} = mathcal{R}$), about which we show ({em inter alia}): $A in mathcal{A}$ if and  only if...

متن کامل

On the solving matrix equations by using the spectral representation

‎The purpose of this paper is to solve two types of Lyapunov equations and quadratic matrix equations by using the spectral representation‎. ‎We focus on solving Lyapunov equations $AX+XA^*=C$ and $AX+XA^{T}=-bb^{T}$ for $A‎, ‎X in mathbb{C}^{n times n}$ and $b in mathbb{C} ^{n times s}$ with $s < n$‎, ‎which $X$ is unknown matrix‎. ‎Also‎, ‎we suggest the new method for solving quadratic matri...

متن کامل

Polynomially bounded solutions of the Loewner‎ ‎differential equation in several complex variables

‎We determine the‎ ‎form of polynomially bounded solutions to the Loewner differential ‎equation that is satisfied by univalent subordination chains of the‎ ‎form $f(z,t)=e^{int_0^t A(tau){rm d}tau}z+cdots$‎, ‎where‎ ‎$A:[0,infty]rightarrow L(mathbb{C}^n,mathbb{C}^n)$ is a locally‎ ‎Lebesgue integrable mapping and satisfying the condition‎ ‎$$sup_{sgeq0}int_0^inftyleft|expleft{int_s^t‎ ‎[A(tau)...

متن کامل

Amitraz Poisoning; A case study

A m i t r a z, a n i ns e c t i c i d e /a ca ri c i de of the f o r m a m i d i n e p e st i c i d e s group, is a ? 2 a d r e n e r g i c ag on i st a nd of t he a m i d i ne c h e m i ca l f a m il y generally us e d to c o n t r ol animal e c top a r a s i t e s. Poisoning due to am i t r a z i s r a r e and character...

متن کامل

A NORM INEQUALITY FOR CHEBYSHEV CENTRES

In this paper, we study the Chebyshev centres of bounded subsets of normed spaces and obtain a norm inequality for relative centres. In particular, we prove that if T is a remotal subset of an inner product space H, and F is a star-shaped set at a relative Chebyshev centre c of T with respect to F, then llx - qT (x)1I2 2 Ilx-cll2 + Ilc-qT (c) 112 x E F, where qT : F + T is any choice functi...

متن کامل

On C0-Group of Linear Operators

In this paper we consider C0-group of unitary operators on a Hilbert C*-module E. In particular we show that if A?L(E) be a C*-algebra including K(E) and ?t a C0-group of *-automorphisms on A, such that there is x?E with =1 and ?t (?x,x) = ?x,x t?R, then there is a C0-group ut of unitaries in L(E) such that ?t(a) = ut a ut*.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002